COURSE STRUCTURE & SYLLABUS for
M.Tech EEE Common for
I. Power Electronics (PE)
II. Power and Industrial Drives (P&ID)
III. Power Electronics and Electrical Drives (PE &ED)
IV. Power Electronics and Drives (PE&D)
V. Power Electronics and systems (PE&S)
VI. Electrical Machines and Drives (EM&D)

Programme
(Applicable for batches admitted from 2019-2020)
COURSE STRUCTURE

I Semester

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course No</th>
<th>Category</th>
<th>Course Name</th>
<th>P.Os</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td></td>
<td>Electrical Machine Modeling and Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td></td>
<td>Analysis of Power Electronic Converters</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PE</td>
<td></td>
<td>Elective – I i. Modern Control Theory ii. Power Quality and Custom Power Devices iii. Programmable Logic Controllers & Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PE</td>
<td></td>
<td>Elective – II i. Artificial Intelligence Techniques ii. Renewable Energy Technologies iii. HVDC Transmission and Flexible AC Transmission Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Power Electronics Simulation Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Power Converters Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Audit Course – 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>800</td>
</tr>
</tbody>
</table>

II Semester

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course No</th>
<th>Category</th>
<th>Course Name</th>
<th>P.Os</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td></td>
<td>Switched Mode Power Conversion</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td></td>
<td>Power Electronic Control of Electrical Drives</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PE</td>
<td></td>
<td>Elective – III i. Control & Integration of Renewable Energy Systems ii. Hybrid Electric Vehicles iii. Digital Control Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PE</td>
<td></td>
<td>Elective – IV i. Advanced Digital Signal Processing ii. Applications of Power Converters iii. Microcontrollers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Electric Drives Simulation Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Electric Drives Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Mini Project with Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Audit Course – 2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>12</td>
<td>18</td>
<td>800</td>
</tr>
</tbody>
</table>
III Semester

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course No</th>
<th>Category</th>
<th>Course Name</th>
<th>P.Os</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PE</td>
<td>Program Elective – V</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>i. Digital Signal Processing Controlled Drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ii. Smart Grid Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iii. Modeling & Simulation of Power Electronic Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>OE</td>
<td>Open Elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>i. Industrial Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ii. Energy Audit, Conservation & Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iii. Composite Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Dissertation Phase - I</td>
<td></td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(to be continued and evaluated next semester)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV Semester

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course No</th>
<th>Category</th>
<th>Course Name</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Dissertation Phase-II</td>
<td>0</td>
<td>32</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(continued from III semester)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Audit course 1 & 2

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills.
I- Semester | Electrical Machines Modeling and Analysis | Category | L-T-P | Credits
--- | --- | --- | --- | ---
Pre-requisite: Electrical machines & Special machines.
Course Educational Objectives:
- To know the concepts of generalized theory of electrical machines.
- To represent the DC and AC machines as Basic Two Pole machine.
- To model the electrical machines with voltage, current, torque and speed equations.
- To investigate the steady state and transient behavior of the electrical machines.
- To understand the dynamic behavior of the AC machines.
UNIT– 1
Basic concepts of Modeling
Basic two-pole machine representation of Commutator machines, representations of 3-phase synchronous machine with and without damper bars and 3-phase induction machine, Kron’s primitive Machine voltage, current and torque equations.
UNIT– 2
DC Machine Modeling
UNIT– 3
Reference frame theory & Modeling of single phase Induction Machines
Linear transformation-Phase transformation - three phase to two phase transformation (abc to α β 0) and vice-versa, transformation to rotating reference frame, (α β 0 to dq0) and vice versa -Power equivalence-Mathematical modeling of single phase induction machines.
UNIT– 4
Modeling of three phase Induction Machine
Generalized model in arbitrary reference frame-Derivation of commonly used induction machine models-Synchronously rotating reference frame model, Stator reference frame model-Rotor reference frame model--power equation, electromagnetic torque equation, state space model in induction motor with flux linkages as variables
UNIT– 5
Modeling of Synchronous Machine
Synchronous machine inductances –derivation of voltage equations in the rotor’s dq0 reference frame electromagnetic torque-current in terms of flux linkages-three phase synchronous motor. State space models with flux linkages as variables.
Course Outcomes: At the end of the course, student will be able to
- Analyze the characteristics of different types of DC motors to design suitable controllers for different applications.
- Apply the knowledge of reference frame theory for AC machines to model the induction and Synchronous machines.
- Evaluate the steady state and transient behavior of induction and synchronous machines to propose the suitability of drives for different industrial applications
- Analyze the behavior of induction machines using voltage and torque equations.
Text Books

Reference Books:
I-Semester: Analysis of Power Electronic Converters

<table>
<thead>
<tr>
<th>Pre-Requisite: Power Electronics.</th>
</tr>
</thead>
</table>

Course Educational Objectives:

- To understand the control principle of ac to ac conversion with suitable power semiconductor devices.
- To have the knowledge of ac to dc conversion and different ac to dc converter topologies.
- To understand the effect of operation of controlled rectifiers on p.f. and improvement of p.f. with PFC converters.
- To acquire the knowledge on dc-ac converters and to know the different control techniques of dc-ac converters.
- To know multilevel inverter configuration to improve the quality of the inverter output voltage.

UNIT 1

Overview of Switching Devices:
Power MOSFET, IGBT, GTO, GaN devices-static and dynamic characteristics, gate drive circuits for switching devices.

UNIT 2

AC-DC converters: Single phase fully controlled converters with RL load– Evaluation of input power factor and harmonic factor- Continuous and Discontinuous load current, Power factor improvements, Extinction angle control, symmetrical angle control, PWM control. Three Phase AC-DC Converters, fully controlled converters feeding RL load with continuous and discontinuous load current, Evaluation of input power factor and harmonic factor-three phase dual converters.

UNIT 3

Power Factor Correction Converters: Single-phase single stage boost power factor corrected rectifier, power circuit principle of operation, and steady state- analysis, three phase boost PFC converter

UNIT 4

UNIT 5

Course Outcomes: At the end of the course, student will be able to

- Describe and analyze the operation of AC-DC converters.
- Analyze the operation of power factor correction converters.
- Analyze the operation of three phase inverters with PWM control.
- Study the principles of operation of multi-level inverters and their applications.
Text Books

Reference Books:
Pre-requisite: Control Systems, differential equations.

Course Educational Objectives:

- To facilitate the evolution of state variable approach for the analysis of control systems.
- To examine the importance of controllability and observability in modern control engineering.
- To enable students to analyze various types of nonlinearities & construction of trajectories using describing functions and phase plane analysis.
- To study the analysis of stability and instability of continuous time invariant system.

UNIT– 1
State Variable Analysis
The concept of state – State Equations for Dynamic systems– Solution of Linear Time Invariant Continuous-Time State Equations, State transition matrix and it’s properties. Controllability and Observability of state model in Jordan Canonical form - Controllability and Observability Canonical forms of State model

UNIT– 2
Design using state variable technique
Design of state feedback controller through pole placement technique-Necessary and sufficient condition-Ackermann’s formula. Concept of observer-Design of full order state observer-reduced order observer.

UNIT– 3
Non Linear Systems

UNIT– 4
Stability Analysis

UNIT– 5
Introduction to Optimal Control
Minimization of functional of single function – Constrained minimization – Minimum principle – Control variable inequality constraints – Control and state variable inequality constraints – Euler Lagrangine equation.
Typical optimal control performance measures-optimal control based on Quadratic performance measures- Quadratic optimal regulator systems- State regulator problems –Output regulator problems, tracking problems; Riccati equation-Infinite time regulator problem-Reduce matrix Riccati equation-determination of optimal feedback gain matrix.

Course Outcomes: At the end of the course, student will be able to

- Formulate and solve the state equations of dynamic systems, analyze controllability and observability.
- Design a state feedback controller; design an observer.
- Linearize a nonlinear system model; analyze non-linear systems through describing functions.
- Determine the stability of a given system; generate a Lyapunov function.
- Minimize a given functional, design an optimal feedback gain matrix.
Text Books:

Reference Books:
5. Optimal control theory: an Introduction by Donald E.Kirk by Dover publications.
Pre requisite: Knowledge on electric circuit analysis, power systems and power electronics and concept of reactive power compensation techniques.

Course Educational Objectives:
- To understand significance of power quality and power quality parameters.
- To know types of transient over voltages and protection of transient voltages.
- To understand harmonics, their effects, harmonic indices and harmonic minimization techniques.
- To understand the importance of power devices and their applications.
- To understand different compensation techniques to minimize power quality disturbances.

UNIT – 1
Introduction to power quality: Overview of Power Quality, Concern about the Power Quality, General Classes of Power Quality Problems, Voltage Unbalance, Waveform Distortion, Voltage fluctuation, Power Frequency Variations, Power Quality Terms, Voltage Sags, swells, flicker and Interruptions - Sources of voltage and current interruptions, Nonlinear loads.

UNIT – 2

UNIT – 3

UNIT – 4
Custom Power Devices: Custom power and custom power devices, voltage source inverters, reactive power and harmonic compensation devices, compensation of voltage interruptions and current interruptions, static series and shunt compensators, compensation in distribution systems, interaction with distribution equipment, installation considerations.

UNIT – 5
Application of custom power devices in power systems: Static and hybrid Source Transfer Switches, Solid state current limiter - Solid state breaker. P-Q theory – Control of P and Q, Dynamic Voltage Restorer (DVR): Operation and control – Interline Power Flow Controller (IPFC): Operation and control of Unified Power Quality Conditioner (UPQC); Generalized power quality conditioner

Course Outcomes: At the end of the course, student will be able to
- Identify the issues related to power quality in power systems.
- Address the problems of transient and long duration voltage variations in power systems.
- Analyze the effects of harmonics and study of different mitigation techniques.
- Identify the importance of custom power devices and their applications.
- Acquire knowledge on different compensation techniques to minimize power quality disturbances.
Text Books:

Reference Books:
6. Power Quality in Power systems and Electrical Machines-EwaldF.fuchs, Mohammad A.S. Masoum-Elsevier
Pre-requisite: Knowledge on relay logic and digital electronics.

Course Educational Objectives:

- To have knowledge on PLC.
- To acquire the knowledge on programming of PLC.
- To understand different PLC registers and their description.
- To have knowledge on data handling functions of PLC.
- To know how to handle analog signal and converting of A/D in PLC.

UNIT– 1
PLC Basics:
PLC system, I/O modules and interfacing, CPU processor, programming equipment, programming formats, construction of PLC ladder diagrams, devices connected to I/O modules.

UNIT– 2
PLC Programming:
Input instructions, outputs, operational procedures, programming examples using contacts and coils. Drill press operation. Digital logic gates, programming in the Boolean algebra system, conversion examples. Ladder diagrams for process control: Ladder diagrams and sequence listings, ladder diagram construction and flow chart for spray process system.

UNIT– 3
PLC Registers:
Characteristics of Registers, module addressing, holding registers, input registers, output registers. PLC Functions: Timer functions and Industrial applications, counters, counter function industrial applications, Arithmetic functions, Number comparison functions, number conversion functions.

UNIT– 4
Data Handling functions:
SKIP, Master control Relay, Jump, Move, FIFO, FAL, ONS, CLR and Sweep functions and their applications. Bit Pattern and changing a bit shift register, sequence functions and applications, controlling of two axis and three axis Robots with PLC, Matrix functions.

UNIT– 5
Analog PLC operation:
Analog modules and systems, Analog signal processing, multi bit data processing, analog output application examples, PID principles, position indicator with PID control, PID modules, PID tuning, PID functions.

Course Outcomes: At the end of the course, student will be able to

- Understand the PLCs and their I/O modules.
- Develop control algorithms to PLC using ladder logic etc.
- Manage PLC registers for effective utilization in different applications.
- Handle data functions and control of two axis and their axis robots with PLC.
- Design PID controller with PLC.
Text Books:

Reference Books:

Artificial Intelligence Techniques
Elective-II

<table>
<thead>
<tr>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Fundamentals of Neural networks and Fuzzy Logic

Course Educational Objectives:

- To have knowledge on concept of neural network.
- To know different types of neural networks and training algorithms.
- To understand the concept of genetic algorithm and its application in optimization.
- To have the knowledge on fuzzy logic and design of fuzzy logic controllers.
- To know the applications of AI Techniques in electrical engineering.

UNIT– 1
Introduction

UNIT– 2
ANN Paradigms
ADALINE – feed forward networks – Back Propagation algorithm- number of hidden layers – gradient decent algorithm – Radial Basis Function (RBF) network. Kohonen’s self organizing map (SOM), Learning Vector Quantization (LVQ) and its types – Functional Link Networks (FLN) – Bidirectional Associative Memory (BAM) – Hopfield Neural Network.

UNIT– 3
Classical and Fuzzy Sets
Introduction to classical sets- properties, Operations and relations; Fuzzy sets, Membership, Operations, Properties, Fuzzy relations, Cardinalities, Membership functions.

UNIT– 4
FUZZY LOGIC CONTROLLER (FLC)
Fuzzy logic system components: Fuzzification, Inference engine (development of rule base and decision making system), Defuzzification to crisp sets- Defuzzification methods.

UNIT– 5
Application of AI Techniques
Speed control of DC motors using fuzzy logic –load flow studies using back propagation algorithm, single area and two area load frequency control using fuzzy logic.

Course Outcomes: At the end of the course, student will be able to

- Differentiate between Algorithmic based methods and knowledge based methods.
- Use appropriate AI framework for solving power system problems.
- To design fuzzy logic controllers for power engineering applications.

Text Books:

Reference Books:

4. Introduction to Neural Networks using MATLAB 6.0 by S N Sivanandam, S Sumathi, S N Deepa
Pre requisite: UG power Electronics.

Course Educational Objectives:

- To learn technical challenges in renewable energy.
- To learn basics of wind energy conversion & PV power generation.
- To analyze the of fuel cell system.

UNIT– 1
Introduction: Renewable Sources of Energy; Distributed Generation; Renewable Energy Economics - Calculation of Electricity Generation Costs; Demand-Side Management Options; Supply-Side Management Options; Control of renewable energy based power Systems

UNIT– 2
Induction Generators: Principles of Operation; Representation of Steady-State Operation; Power and Losses Generated - Self-Excited Induction Generator; Magnetizing Curves and Self-Excitation - Mathematical Description of the Self-Excitation Process; Interconnected and Stand-alone operation - Speed and Voltage Control.

UNIT– 3
Wind Power Plants: Site Selection; Evaluation of Wind Intensity; Topography; Purpose of the Energy Generation- General Classification of Wind Turbines; Rotor Turbines; Multiple-Blade Turbines; Drag Turbines; Lifting Turbines - Generators and Speed Control Used in Wind Power Energy; Analysis of Small wind energy conversion system.

UNIT– 4

UNIT– 5
Fuel Cells: The Fuel Cell; Low- and High-Temperature Fuel Cells; Commercial and Manufacturing Issues - Constructional Features of Proton Exchange-Membrane Fuel Cells; Reformers; Electrolyzer Systems; Advantages and Disadvantages of Fuel Cells - Fuel Cell Equivalent Circuit; Practical Determination of the Equivalent Model Parameters; Aspects of Hydrogen for storage

Course Outcomes: At the end of the course, student will be able to

- Understand various general aspects of renewable energy systems.
- Analyze and design induction generator for power generation from wind.
- Design MPPT controller for solar power utilization.
- Utilize fuel cell systems for power generation.
Text Books:

Reference Books:

HVDC Transmission and Flexible AC Transmission Systems (Elective-II)

Pre-requisite: Knowledge on Power Electronics, Power Systems and High Voltage Engineering

Course Educational Objectives:
- To learn various schemes of HVDC transmission.
- To learn the operation and analysis of different HVDC converter circuits.
- To learn the control of HVDC systems.
- To learn the basic types of FACTS controllers.
- To learn the series and shunt compensators.

UNIT– 1
HVDC Transmission: DC Power Transmission: Need for power system interconnections, Evolution of AC and DC transmission systems, Comparison of HVDC and HVAC Transmission systems, Types of DC links, relative merits, Components of a HVDC system, Modern trends in DC Transmission systems

UNIT– 2
Analysis of HVDC Converters: Pulse number, choice of converter configurations, Analysis of Graetz circuit with and without overlap, voltage waveforms, Analysis of two and three valve conduction mode, Converter Bridge characteristics, Inverter mode of operation, voltage waveforms

UNIT– 3
HVDC Control: Principles of DC link control, Converter Control characteristics, Control hierarchy
Constant current Control, CEA Control, firing angle control of valves, starting and stopping of a dc link, Power control
Harmonics and Filters: effects of Harmonics, sources of harmonic generation, Types of filters –Design examples

UNIT– 4
Power Flow Analysis in AC/DC Systems: Modelling of DC links, solutions of AC-DC Power flow
Flexible AC Transmission Systems (FACTS): FACTS concepts and general system conditions: Power flow in AC systems, Relative importance of controllable parameters, Basic types of FACTS controllers, shunt and series controllers, Current source and Voltage source converters

UNIT– 5
Static Shunt Compensators: Objectives of shunt compensation, Methods of controllable VAR generation, Static Var Compensator, its characteristics, TCR, TSC, STATCOM, basic operating principle, control approaches and characteristics
Static Series Compensators: Objectives of series compensator, variable impedance type of series compensators, TCSC, TSSC-operating principles and control schemes, SSSC, Power Angle characteristics, Control range and VAR rating, Capability to provide reactive power compensation, external control
Introduction to Unified Power Flow Controller, Basic operating principles, Conventional control capabilities, Independent control of real and reactive power.

Course Outcomes: At the end of the course, student will be able to
- Compare HVDC and EHVAC transmission systems
- Analyze converter configurations used in HVDC and evaluate the performance metrics.
- Understand controllers for controlling the power flow through a dc link and compute filter Parameters.
- Apply impedance, phase angle and voltage control for real and reactive power flow in ac transmission systems with FACTS controller.
- Analyze and select a suitable FACTS controller for a given power flow condition.
Text Books:

Reference Books:

UNIT-I
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II
Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-III

UNIT-IV

UNIT-V
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

REFERENCES:

2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
Course Educational Objectives:
To analyze the operation of DC-DC converters, AC-DC converters and DC-AC converters by simulation.

Any 10 of the following experiments are to be conducted.

List of Experiments:
1. Simulation of Buck converter using small signal model.
2. Simulation of Boost converter using small signal model.
3. Simulation of single phase half bridge inverter.
4. Simulation of single-phase full bridge inverter using Uni-polar & Bi-polar PWM techniques.
5. Simulation of three phase inverter using sine-triangle PWM.
6. Simulation of three phase inverter using space vector PWM.
7. Simulation of three level three phase NPC inverter.
8. Study of neutral point voltage floating in NPC three level inverter
9. Simulation of 3-level flying capacitor inverter & evaluation of capacitor voltage balanced methods.
10. Simulation of single phase AC voltage regulator.
11. Simulation of three phase AC voltage regulator.
12. Comparison of harmonic profile of two level& three level inverter (FFT analysis).
13. Simulation of 5-level inverter using carrier based PWM methods.
15. Simulation of three-phase dual converter.

Course Outcome: To understand the operation of DC-DC converters, AC-DC converters, AC voltage regulators and DC-AC converters by simulation.
Course Educational Objectives:
To study and understand the different converters and inverters for single and three phase loads.

Any 10 of the following experiments are to be conducted.

List of experiments

1. Study of DC-DC non-isolated converters such as Buck & Boost converter.
2. Study of DC-DC Buck-Boost and Cuk converters.
3. Study of 1-ϕ dual converter.
5. Study of p.f. improvement in 1-ϕ full-converter with symmetric and extinction angle control.
6. Study of 1-ϕ square wave and sinusoidal PWM inverter.
7. Study of 3-ϕ inverter with 120° and 180° mode of operation.
8. Study of 3-ϕ sinusoidal PWM inverter.
9. Study of 3-level NPC inverter.
10. Study of 5-level cascaded H-bridge inverter.
13. Study the characteristics of IGBT, MOSFET & GTO’s.
14. Design of gate drive circuits for IGBT & MOSFET’s.

Course Outcomes: Students are able to implement the converter and inverters in real time applications.
<table>
<thead>
<tr>
<th>I-Semester</th>
<th>Audit Course-1</th>
<th>PC</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-0-0</td>
<td>0</td>
</tr>
</tbody>
</table>
Pre-requisite: Concepts of electrical circuit analysis and power electronics.

Course Educational Objectives:
- To understand the control operation of non-sinusoidal DC-DC converters.
- To understand the basic operation of resonant converters.
- To understand the control operation of isolated DC-DC converters.
- To understand the control schemes of DC-DC converters and designing of magnetic components.
- To understand the modeling and control design of switch mode conversion based on linearization.
- To understand how to analyze the switch mode converters using small-signal analysis.

UNIT – 1
Non-isolated switch mode converters:
Control of DC-DC converters: Buck converters, Boost converters, Buck-Boost converter, CUK Converter, continuous and discontinuous operation, Converter realization with non-ideal components.

UNIT – 2
Isolated switched mode converters:
Forwarded converter, flyback converter, push-pull converter, half-bridge converter, full bridge converter.

UNIT – 3
Resonant converters:

UNIT – 4
Control schemes of switching converters:
Voltage control, Current mode control, control scheme for resonant converters.
Magnetic design consideration: Transformer design, inductor and capacitor design.

UNIT – 5
Modeling and Controller design based on linearization:
Formulation of averaged models for buck and boost converters: state space analysis, average circuit models, linearization and small – signal analysis, small-signal models.
Control design based on linearization: Transfer function of converters, control design, large signal issues in voltage-mode and current-mode control.

Course Outcomes: At the end of the course, student will be able to
- Analyze operation and control of non-isolated and isolated switch mode converters.
- Design of non-isolated and isolated switch mode converters.
- Analyze operation and control of resonant converters.
- Feedback design of switch mode converters based on linearized models.
Text Books:

Reference Books:
1. Power Electronics: Essentials and applications- L. Umanand, Wiley publications
Pre-requisite: Knowledge of Power Electronics and Electrical Machines.

Course Educational Objectives:
- To familiarize with advanced control schemes for induction motor drives and control techniques for PMSM, BLDC and SRM drives.

UNIT– 1
Vector Control of Induction Motor Drive:
Principle of scalar and vector control, direct vector control, indirect vector control, rotor flux oriented control, stator flux oriented control, air gap flux oriented control, decoupling circuits.

UNIT– 2
Sensor less Control of Induction Motor Drive:
Advantages of speed sensor less control, voltage current based speed sensor less control, MRAS-model reference adaptive systems, Extended Kalman filter observers.

UNIT– 3
Direct Torque Control of Induction Motor Drive:
Principle of Direct torque control (DTC), concept of space vectors, DTC control strategy of induction motor, comparison between vector control and DTC, applications, space vector modulation based DTC of induction motors.

UNIT– 4
Control of Permanent Magnet Synchronous Machines (PMSM) and Brushless DC (BLDC) Motor Drives:
Advantages and limitations of Permanent magnet machines, operating principle of PMSM, modeling of PMSM, operating principle of BLDC, modeling of BLDC, similarities and difference between PMSM and BLDC, need for position sensing in BLDC motors, control strategies for PMSM and BLDC, methods of reducing torque ripples of BLDC motor.

UNIT– 5
Control of Switched Reluctance Motor (SRM) Drive:
SRM structure, Merits and limitations, stator excitation, converter topologies, SRM waveforms, Torque control schemes, speed control of SRM, torque ripple minimization, instantaneous -torque control using current controllers and flux controllers.

Course Outcomes: After the completion of the course, student will be able to
- Understand the concepts of scalar and vector control methods for drive systems.
- Analyze and design controllers and converters for induction motor, PMSM and BLDC drives.
- Select and implement proper control techniques for induction motor and PMSM for specific applications.
- Analyze and design control techniques and converters for SRM drives.

Text Books:

Reference Books:
2. Power electronic converters applications and design-Mohan, Undeland, Robbins-Wiley publications
Course Educational Objectives:

- To understand different conventional & non-conventional dynamic energy conversion technologies.
- To learn the principles of static energy conversion technologies.
- To understand the basics of real & reactive power control with renewable generators.
- To learn the principles of standalone and grid connected systems.

UNIT-1
Introduction: Electric grid introduction, Supply guarantee and power quality, Stability, Effects of renewable energy penetration into the grid, Boundaries of the actual grid configuration, Consumption models and patterns, static and dynamic energy conversion technologies, interfacing requirements.

UNIT-2
Dynamic Energy Conversion Technologies: Introduction to different conventional and nonconventional dynamic generation technologies, principle of operation and analysis of reciprocating engines, gas and micro turbines, hydro and wind based generation technologies, control and integrated operation of different dynamic energy conversion devices.

UNIT-3
Static Energy Conversion Technologies: Introduction to different conventional and nonconventional static generation technologies, principle of operation and analysis of fuel cell, photovoltaic based generators, and wind based generation technologies, different storage technologies such as batteries, fly wheels and ultra-capacitors, plug-in-hybrid vehicles, control and integrated operation of different static energy conversion devices.

UNIT-4
Real and reactive power control: Control issues and challenges in Diesel, PV, wind and fuel cell based generators, PLL, Modulation Techniques, Dimensioning of filters, Linear and nonlinear controllers, predictive controllers and adaptive controllers, Fault-ride through Capabilities, Load frequency and Voltage Control.

UNIT-5
Integration of different Energy Conversion Technologies: Resources evaluation and needs, Dimensioning integration systems, Optimized integrated systems, Interfacing requirements, integrated Control of different resources, Distributed versus Centralized Control, Synchro Converters, Grid connected and Islanding Operations, stability and protection issues, load sharing, Cases studies.

Course Outcomes: After the completion of the course, student will be able to

- Gain knowledge on different renewable energy sources and storage devices
- Recognize, model and simulate different renewable energy sources
- Analyze, model and simulate basic control strategies required for grid connection
- Implement a complete system for standalone/grid connected system
Text books:

References:
II-Semester	Hybrid Electric Vehicles (Elective-III)	Category	L-T-P	Credits

Pre-requisite: Knowledge of Power Electronics and Electric Drives

Course Educational Objectives:
- To learn the concept of hybrid vehicles, types of electric drives used in hybrid vehicles and their control.

UNIT– 1
Introduction:
History of hybrid vehicles, architectures of HEVs, series and parallel HEVs, complex HEVs.

UNIT– 2
Hybridization of Automobile:
Fundamentals of vehicle, components of conventional vehicle and propulsion load; Drive cycles and drive terrain; Concept of electric vehicle and hybrid electric vehicle; Plug-in hybrid vehicle, constituents of PHEV, comparison of HEV and PHEV; Fuel Cell vehicles and its constituents.

UNIT– 3
Plug-in Hybrid Electric Vehicle:
PHEVs and EREVs blended PHEVs, PHEV Architectures, equivalent electric range of blended PHEVs; Fuel economy of PHEVs, power management of PHEVs, end-of-life battery for electric power grid support, vehicle to grid technology, PHEV battery charging.

UNIT– 4
Power Electronics in HEVs:
Rectifiers used in HEVs, voltage ripples; Buck converter used in HEVs, non-isolated bidirectional DC-DC converter, regenerative braking, voltage source inverter, current source inverter, isolated bidirectional DC-DC converter, PWM rectifier in HEVs, EV and PHEV battery chargers.

UNIT– 5
Battery and Storage Systems
Energy Storage Parameters; Lead–Acid Batteries; Ultra capacitors; Flywheels - Superconducting Magnetic Storage System; Pumped Hydroelectric Energy Storage; Compressed Air Energy Storage - Storage Heat; Energy Storage as an Economic Resource

Course Outcomes: At the end of the course, student will be able to
- Know the concept of electric vehicles and hybrid electric vehicles.
- Familiar with different motors used for hybrid electric vehicles.
- Understand the power converters used in hybrid electric vehicles
- Know different batteries and other energy storage systems.

Text Books
Reference Books:

Research Books:
Pre-Requisite: Control Systems, digital control systems.

Course Educational objectives:
- To understand fundamentals of digital circuits and devices using Z-transforms and Inverse Z-Transforms
- To understand the controllability and observability in digital domain
- To understand the stability and controller design in digital domain
- To understand the design an observer
- To understand the solving of a given optimal control problem

UNIT– 1
Introduction

UNIT– 2
State space analysis and the concepts of Controllability and observability

UNIT– 3
Stability Analysis and Controller Design
Design of state feedback controller through pole placement techniques, Necessary and sufficient conditions, Ackermann’s formula, controller for deadbeat response, control system with reference input,
Design of full order observer-reduced order observer.

UNIT– 4
State Observer
Necessary and sufficient condition for state observation-Full order state observer- error dynamics – design of prediction observers- Ackermann’s formula-effect of the addition of observer on closed loop system-Current observer- minimum order observer observed – state feedback control system with minimum order observer -control system with reference input.

UNIT– 5
Quadratic Optimal Control Systems
Quadratic optimal control problems-Solution by minimization method using Lagrange multipliers-
Course Outcomes: At the end of the course, student will be able to

- Analyze digital control systems using Z-transforms and Inverse Z-Transforms.
- Evaluate the state transition matrix and solve state equation for discrete model for continuous time systems, investigate the controllability and observability.
- Determine the stability; design state feedback controller.
- Design an observer.
- Solve a given optimal control problem.

Text Book:

Reference Books:

Pre-requisite: Signals & Systems

Course Educational Objectives:

- To understand the various digital filter structures
- To design the FIR and IIR Filters
- To know the importance of FFT algorithm for computation of Discrete Fourier Transform
- To analyze the finite word length effects on various filters
- To learn the concepts of power spectrum estimation of periodic and non-periodic signals

UNIT– 1
Digital Filter Structure: Block diagram representation-Equivalent Structures-FIR and IIR digital filter Structures All pass Filters-tunable IIR Digital Filters-IIR tapped cascaded Lattice Structures-FIR cascaded Lattice structures-Parallel-Digital Sine-cosine generator-Computational complexity of digital filter structures.

UNIT– 2
Digital filter design: Preliminary considerations-Bilinear transformation method of IIR filter design-design of lowpass, high pass-band pass, and band stop- IIR digital filters-Spectral transformations of IIR filters, FIR filter design-based on windowed Fourier series- design of FIR digital filters with least –mean-square-error-constrained least-square design of FIR digital filters

UNIT– 3
DSP algorithm implementation: Computation of the discrete Fourier transform- number representation-arithmetic operations handling of overflow-tunable digital filters-function approximation.

UNIT– 4

UNIT– 5

Course Outcomes: At the end of the course, student will be able to

- Describe structure of digital filters.
- Design digital filters with different techniques.
- Understand the implementation aspects of signal processing algorithms.
- Know the effect of finite word length in signal processing.
- Analyze different power spectrum estimation techniques.
Text Books:

Reference Books:

4. Digital Filter Analysis and Design-Auntonian-TMH.
Pre-requisites: Analysis of Power Electronic Converters

Course Educational Objectives:
- To understand the inverters for induction heating applications
- To understand the power converters for different industrial applications
- To understand modeling of high voltage power supplies using the power converters for radar and space applications
- To understand modeling of low voltage and high current power supplies using the power converters for microprocessors and computer loads
- To understand the applications of DC-DC converters

UNIT-1
Inverters for Induction Heating: For induction cooking, induction hardening, melting, and welding applications.

UNIT-2
Power Converters for Lighting, pumping and refrigeration Systems: Electronic ballast, LED power drivers for indoor and outdoor applications. PFC based grid fed LED drivers, PV / battery fed LED drivers. PV fed power supplies for pumping/refrigeration applications.

UNIT-3
High Voltage Power Supplies - Power supplies for X-ray applications - power supplies for radar applications - power supplies for space applications.

UNIT-4
Low voltage high current power supplies: Power converters for modern microprocessor and computer loads

UNIT-5
Bi-directional DC-DC (BDC) converters: Electric traction, automotive Electronics and charge/discharge applications, Line Conditioners and Solar Charge Controllers

Course Outcomes: At the end of the course, the student will be able to
- Analyze power electronic application requirements.
- Identify suitable power converter from the available configurations.
- Develop improved power converters for any stringent application requirements.
- Improvise the existing control techniques to suit the application. Design of Bi-directional converters for charge/discharge applications

Text books:

References:
2. Current literature
Pre-requisite: Basic micro-processors & micro controllers.

Course Educational Objectives:
- To learn about microcontrollers architecture.
- To learn about DSP architecture and assembly programming for DSP processors.
- To learn about basics of FPGA controllers.

UNIT– 1
PIC Microcontrollers
PIC Microcontrollers: Overview and Features, PIC 16C6X/7X, FSR (File Selection Register) [Indirect Data Memory Address Pointer], PIC Reset Actions, PIC Oscillator Connections, PIC Memory Organizations, PIC PIC 16C6X/7X Instructions, Addressing Modes, I/O Ports, Interrupts in PIC 16C61/71, PIC 16C61/71 Timers, PIC 16C71 Analog-to-Digital Converter (ADC)

UNIT– 2
Introduction to DSP

UNIT– 3
I/O & Control Registers
Pin Multiplexing (MUX) and General Purpose I/O Overview, Multiplexing and General Purpose I/O Control Registers, Introduction to Interrupts, Interrupt Hierarchy, Interrupt Control Registers, Initializing and Servicing Interrupts in Software.

UNIT– 4
ADC & Event Manager
ADC Overview, Operation of the ADC in the DSP, Overview of the Event manager (EV), Event Manager Interrupts, General Purpose (GP) Timers, Compare UNITs, Capture UNITs And Quadrature Enclosed Pulse (QEP) Circuitry, General Event Manager Information

UNIT– 5
Introduction to Field Programmable Gate Arrays – CPLD Vs FPGA – Types of FPGA, Xilinx C3000 series, Configurable logic Blocks (CLB), Input/Output Block (IOB) – Programmable Interconnect Point (PIP) – Xilinx 4000 series – HDL programming – overview of Spartan 3E and Virtex II pro FPGA boards- case study.

Course Outcomes: At the end of the course, student will be able to
- Design the interfacing circuits for input and output to PIC micro controllers and DSP processors.
- Write ALP for DSP processors.
- Design PWM controller for power electronic circuits using FPGA.
Text Books:

Reference Books:
2. Microprocessor and Microcontrollers by Prof C.R. Sarma.
4. Wayne Wolf,” FPGA based system design “, Prentice hall, 2004
<table>
<thead>
<tr>
<th>II-Semester</th>
<th>Electric Drives Simulation Laboratory</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-0-4</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisite: Power electronics & Drives

Course Educational Objectives:
The student should be able to understand the simulate different electrical machines and drives

Any 10 of the following experiments are to be conducted.

List of Experiments:
1. Simulation of DC shunt machine as motor & generator.
2. Simulate the speed control of DC motor using chopper converter.
4. Simulate the speed control of induction motor by using V/f control.
5. Simulate the BLDC motor and observe the speed transients.
7. Compare the transient performance of induction motor controlled by v/f control & vector control methods.
8. Simulate PMSM motor by using d-q model.
10. Simulate the re-generative braking of inverter fed induction motor.
11. Study of PWM controlled inverter fed PMSM drive.
12. Evaluation of switching frequency effect on electric drive

Course Objectives:
The student should analyze the performance of different electrical machines and drives
Course Educational Objectives:
To study the speed control methods of DC & AC drives.

Any 10 of the following experiments are to be conducted.

List of experiments:
1. Study of armature controlled separately excited DC drive with 1-ϕ full converter.
2. Study of chopper controlled separately excited DC drive.
3. Study of armature controlled separately excited DC drive with 3-ϕ full converter
4. Study of dynamic braking of DC drives.
5. Study of regenerative braking of DC drive.
8. Study of direct torque control of induction motor.
9. Speed control of PMSM drive with 3-ϕ inverter.
10. Speed control of BLDC drive with 3-ϕ inverter.
11. Speed control of switched reluctance motor drive.

Course Outcome:
The student should Understand the performance of DC & AC drives.
Note:

It is recommended that a Supervisor/advisor should be allotted to each student at the end of the semester-I or allot at the start of the semester-II.

Syllabus content:

A Student has to select one paper published in any of the IEEE Transactions and simulate the same. The student has to present the progress of the work at the middle of the semester. At the end of the semester, the student has to present the results by explaining the idea of the topic, methodology, finding of the simulations. A Student should also submit a report of the entire work carried out under this course. The end semester presentation must be video recorded and preserved.
<table>
<thead>
<tr>
<th>II-Semester</th>
<th>Audit Course-II</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Audit Course-II</td>
<td></td>
<td>2-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Educational Objectives:
- To study DSP controllers.
- To learn coding in DSP’s to control the electric drive speed.
- To learn speed control methods for induction motor, PMSM, BLDC motors.

UNIT-1
Overview of TMS320LF2407 DSP controller: Review of Instruction Set, Interrupts, normalization and number formatting.

UNIT-2
Clarke’s and Park’s transformations: Review of Clarke's and Park's transformations, Implementation of Clarke's and Park's transformation using TMS320LF2407 DSP

UNIT-3
Implementation of PWM Techniques for 3-Ph VSI: Implementation of Sine-triangle and SVPWM with TMS320LF2407 DSP using the concept of imaginary switching time

UNIT-4
Control of BLDC Motor: Principle of operation with Drive control system, implementation of control system using TMS320LF2407 DSP

UNIT-5
Control of PMSM: Principle of operation with drive control system, implementation of vector control using TMS320LF2407 DSP

UNIT-6
Control of Induction Motor: Implementation of field oriented control for the speed control of Induction Motor using TMS320LF2407 DSP.

Course Outcomes: At the end of the course, student will be able to
- Interface the DSP platform with sensors such as hall-effect voltage sensors,
- Use hall-effect current sensors, shaft encoder for data acquisition for motor drive applications
- Scale and normalize the data to suit the requirements of the drive system
- Exploit the architectural features of the DSP platform to design and implement
- Use algorithms for the realization of controllers, Pulse Width Modulators and observers

Text Books:

Reference:
1. Application Notes from the website of Texas Instruments.
Pre-requisite: Basic knowledge on smart concept communication protocols, renewable energy systems and electronic circuits.

Course Educational Objectives:
- To understand concept of smart grid and developments on smart grid.
- To understand smart grid technologies and application of smart grid concept in hybrid electric vehicles etc.
- To have knowledge on smart substation, feeder automation and application for

UNIT – 1
Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self-Healing Grid, Present development & International policies on Smart Grid. Case study of Smart Grid.

UNIT – 2
Smart Grid Technologies: Part 1: Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

UNIT – 3

UNIT – 4

UNIT – 5

Information and Communication Technology for Smart Grid: Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN).

monitoring and protection.
Course Outcomes:

At the end of this course, the student will be able to:

- Understand smart grids and analyze the smart grid policies and developments in smart grids.
- Develop concepts of smart grid technologies in hybrid electrical vehicles etc.
- Understand smart substations, feeder automation, GIS etc.
- Analyze micro grids and distributed generation systems.
- Analyze the effect of power quality in smart grid and to understand latest developments in ICT for smart grid.

Text Books:

Reference Books:
Pre-requisites: Analysis of Power Electronic Converters

Course Educational Objectives:
- To learn the simulation techniques in Power Electronic Converters.
- To learn the modeling the Power Electronic Converters.
- To simulate control methods for Power Electronic Converters.

UNIT-1
Introduction: Challenges in computer simulation - Simulation process - mechanics of simulation, Solution techniques for time domain analysis - Equation solvers, circuit-oriented simulators.

UNIT-2

UNIT-3

UNIT-4
Modeling, simulation of switching converters with state space averaging, hybrid model: State space approach, averaging method, State Space Averaging Technique – Modeling AND linearization of converter transfer functions- Hybrid Modeling for DC-DC converter.

Course Outcomes: After the completion of the course, student will be able to
- Understand the back ground activities i.e. numerical solution used in the simulation software.
- Can judge or properly choose the required numerical solver to be used for analysis.
- Can understand and debug the convergence problems occurring during simulation.

Text book:

Reference book:
II-Semester	Industrial Safety (Open Elective)	Category	L-T-P	Credits

Pre-requisite: Engineering Fundamentals

Course Educational Objectives:
- To learn safety aspects of any industrial area
- To learn fundamentals and types of maintenance engineering
- To learn causes and effects of wear and corrosion and their prevention
- To learn identification of faults and their repair
- To learn preventive maintenance-periodic and preventive-maintenance of industrial systems

Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors. Types of faults in machine tools and their general causes.

Course Outcomes: At the end of the course, the student should be able to

- Understand the general industrial requirements like lighting, cleanliness prevention from hazards and accidents.
- Analyze maintenance requirements of the industry and cost associated.
- Analyze wear and corrosion aspects of the industry and their prevention.
- Identify the faults prone areas and their repair and periodic maintenance.

Reference Books:
<table>
<thead>
<tr>
<th>III-Semester</th>
<th>Energy Audit Conservation & Management (Open Elective)</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Concepts of utilization of electrical energy, electrical machines and electrical measurements.

Course educational objectives:
- To learn principle of energy audit as well as management for industries and utilities and buildings.
- To study the energy efficient motors and lighting.
- To learn power factor improvement methods and operation of different energy instruments.
- To compute depreciation methods of equipment for energy saving.

UNIT– 1
Basic Principles of Energy Audit
Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams and load profiles, Energy conservation schemes- Energy audit of industries- energy saving potential, energy audit of process industry, thermal power station, building energy audit.

UNIT– 2
Energy Management
Principles of energy management, organizing energy management program, initiating, planning, controlling, promoting, monitoring, reporting. Energy manager, qualities and functions, language, Questionnaire – check list for top management

UNIT– 3
Energy Efficient Motors and Lighting
Energy efficient motors, factors affecting efficiency, loss distribution, constructional details, characteristics – variable speed, variable duty cycle systems, RMS - voltage variation-voltage unbalance-over motoring-motor energy audit. lighting system design and practice, lighting control, lighting energy audit

UNIT– 4
Power Factor Improvement and energy instruments
Power factor – methods of improvement, location of capacitors, Power factor with non-linear loads, effect of harmonics on p.f, p.f motor controllers – Energy Instruments- watt meter, data loggers, thermocouples, pyrometers, lux meters, tongue testers, application of PLC’s

UNIT– 5
Economic Aspects and their computation
Economics Analysis depreciation Methods, time value of money, rate of return, present worth method, replacement analysis, lifecycle costing analysis – Energy efficient motors. Calculation of simple payback method, net present value method- Power factor correction, lighting – Applications of life cycle costing analysis, return on investment.

Course Outcomes: At the end of the course, student will be able to
- Understand the principle of energy audit and their economic aspects.
- Recommend energy efficient motors and design good lighting system.
- Understand advantages to improve the power factor.
- Evaluate the depreciation of equipment.
Text Books:

Reference Books:
3. Energy management and good lighting practice : fuel efficiency- booklet12-EEO.
Pre-requisite: Engineering Physics

Course Educational Objectives:

- To learn characteristics of composite materials and know effects of reinforcement
- To learn application of different fibers, understand rules of mixtures
- To learn manufacturing of ceramic matrix, carbon matrix and applications
- To learn preparation of moulding compounds, properties and applications
- To learn strength and failure criteria

UNIT – 5: Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first ply failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Course Outcomes: At the end of the course, students should be able to

- Understand characteristics and advantages of composite materials
- Acquire knowledge of reinforcement, glass fiber, etc.
- Identify the usage of metal matrix composites
- Understand manufacturing of polymer matrix composites
- Understand manufacturing of polymer matrix composites
- Identify different types of failures.
Text Books:

Reference Books:
<table>
<thead>
<tr>
<th>III SEMESTER</th>
<th>DISSERTATION PHASE-I</th>
<th>CATEGORY</th>
<th>L-T-P</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-0-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>IV SEMESTER</td>
<td>DISSERTATION PHASE-II</td>
<td>CATEGORY</td>
<td>CREDIT</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-T-P 0-0-32</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Course objectives:
Students will be able to:
Understand that how to improve your writing skills and level of readability
Learn about what to write in each section
Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

Syllabus

<table>
<thead>
<tr>
<th>Units</th>
<th>CONTENTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planning and Preparation, Word Order, Breaking up long sentences,</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Structuring Paragraphs and Sentences, Being Concise and Removing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redundancy, Avoiding Ambiguity and Vagueness</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Clarifying Who Did What, Highlighting Your Findings, Hedging and</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Criticising, Paraphrasing and Plagiarism, Sections of a Paper,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstracts, Introduction</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Review of the Literature, Methods, Results, Discussion, Conclusions,</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>The Final Check</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>key skills are needed when writing a Title, key skills are needed when</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>writing an Abstract, key skills are needed when writing an Introduction,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>skills needed when writing a Review of the Literature,</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>skills are needed when writing the Methods, skills needed when writing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>the Results, skills are needed when writing the Discussion, skills are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>needed when writing the Conclusions</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>useful phrases, how to ensure paper is as good as it could possibly be</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>the first-time submission</td>
<td></td>
</tr>
</tbody>
</table>

Suggested Studies:
AUDIT 1 and 2: DISASTER MANAGEMENT

Course Objectives: - Students will be able to:

- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

Syllabus

<table>
<thead>
<tr>
<th>Units</th>
<th>CONTENTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem.
Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man- made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Disaster Prone Areas In India
Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Disaster Preparedness And Management
Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Risk Assessment
Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People’s Participation In Risk Assessment. Strategies for Survival.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Disaster Mitigation
Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.</td>
<td>4</td>
</tr>
</tbody>
</table>
Suggested Readings:

2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall Of India, New Delhi.
Course Objectives
1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
2. Learning of Sanskrit to improve brain functioning
3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Alphabets in Sanskrit,</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Past/Present/Future Tense,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Simple Sentences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Order</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Introduction of roots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technical information about Sanskrit Literature</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

Course Output
Students will be able to
1. Understanding basic Sanskrit language
2. Ancient Sanskrit literature about science & technology can be understood

Being a logical language will help to develop logic in
Course Objectives
5. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
6. Learning of Sanskrit to improve brain functioning
7. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
8. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Alphabets in Sanskrit,</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Past/Present/Future Tense,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Simple Sentences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Order</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Introduction of roots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technical information about Sanskrit Literature</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading
5. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

Course Output
Students will be able to
1. Understanding basic Sanskrit language
2. Ancient Sanskrit literature about science & technology can be understood
3. Being a logical language will help to develop logic in students
Course Objectives
Students will be able to
1. Understand value of education and self-development
2. Imbibe good values in students
3. Let the should know about the importance of character

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Values and self-development – Social values and individual attitudes. Work ethics, Indian vision of humanism. • Moral and non-moral valuation. Standards and principles. • Value judgements</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>• Importance of cultivation of values. • Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. • Honesty, Humanity. Power of faith, National Unity. • Patriotism. Love for nature, Discipline</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>• Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. • Punctuality, Love and Kindness. • Avoid fault Thinking. • Free from anger, Dignity of labour. • Universal brotherhood and religious tolerance. • True friendship. • Happiness Vs suffering, love for truth. • Aware of self-destructive habits. • Association and Cooperation. • Doing best for saving nature</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>• Character and Competence – Holy books vs Blind faith. • Self-management and Good health. • Science of reincarnation. • Equality, Nonviolence, Humility, Role of Women. • All religions and same message. • Mind your Mind, Self-control. • Honesty, Studying effectively</td>
<td>6</td>
</tr>
</tbody>
</table>

Suggested reading

Course outcomes
Students will be able to
1. Knowledge of self-development
2. Learn the importance of Human values
3. Developing the overall personality
AUDIT 1 and 2: CONSTITUTION OF INDIA

Course Objectives:
Students will be able to:
1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

<table>
<thead>
<tr>
<th>Units</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
</table>
| 1 | • History of Making of the Indian Constitution:
 History
 Drafting Committee, (Composition & Working) | 4 |
| 2 | • Philosophy of the Indian Constitution:
 Preamble Salient Features | 4 |
| 3 | • Contours of Constitutional Rights & Duties:
 Fundamental Rights
 Right to Equality
 Right to Freedom
 Right against Exploitation
 Right to Freedom of Religion
 Cultural and Educational Rights
 Right to Constitutional Remedies
 Directive Principles of State Policy
 Fundamental Duties. | 4 |
Organs of Governance:
- Parliament
- Composition
- Qualifications and Disqualifications
- Powers and Functions
 - Executive
 - President
 - Governor
 - Council of Ministers
 - Judiciary, Appointment and Transfer of Judges, Qualifications
- Powers and Functions

<table>
<thead>
<tr>
<th>4</th>
<th>Local Administration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>District’s Administration head: Role and Importance,</td>
</tr>
<tr>
<td>4</td>
<td>Municipalities: Introduction, Mayor and role of Elected Representative, CEO ZilaPachayat.</td>
</tr>
<tr>
<td>4</td>
<td>Elected officials and their roles, CEO ZilaPachayat: Position and role.</td>
</tr>
<tr>
<td>4</td>
<td>Block level: Organizational Hierarchy (Different departments),</td>
</tr>
<tr>
<td>4</td>
<td>Village level: Role of Elected and Appointed officials,</td>
</tr>
<tr>
<td>4</td>
<td>Importance of grass root democracy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Election Commission:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Election Commission: Role and Functioning.</td>
</tr>
<tr>
<td>5</td>
<td>Chief Election Commissioner and Election Commissioners.</td>
</tr>
<tr>
<td>5</td>
<td>State Election Commission: Role and Functioning.</td>
</tr>
<tr>
<td>5</td>
<td>Institute and Bodies for the welfare of SC/ST/OBC and women.</td>
</tr>
</tbody>
</table>

Suggested reading
1. The Constitution of India, 1950 (Bare Act), Government Publication.

Course Outcomes:
Students will be able to:
1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
AUDIT 1 and 2: PEDAGOGY STUDIES

Course Objectives:
Students will be able to:

1. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
2. Identify critical evidence gaps to guide the development.

Syllabus

<table>
<thead>
<tr>
<th>Units</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
</table>
| 1 | **Introduction and Methodology:**
| | - Aims and rationale, Policy background, Conceptual framework and terminology
| | - Theories of learning, Curriculum, Teacher education.
| | - Conceptual framework, Research questions.
| | - Overview of methodology and Searching.
| | **Thematic overview:** Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.
| | - Curriculum, Teacher education.
| 2 | Evidence on the effectiveness of pedagogical practices
| | - Methodology for the in depth stage: quality assessment of included studies.
| | - How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
| | - Theory of change.
| | - Strength and nature of the body of evidence for effective pedagogical practices.
| | - Pedagogic theory and pedagogical approaches.
| | - Teachers’ attitudes and beliefs and Pedagogic strategies.
| 3 | Professional development: alignment with classroom practices and follow-up support
| | - Peer support
| | - Support from the head teacher and the community.
| | - Curriculum and assessment
| | - Barriers to learning: limited resources and large class sizes
| 4 | **Research gaps and future directions**
| | - Research design
| | - Contexts
| | - Pedagogy
| | - Teacher education
| | - Curriculum and assessment
| | - Dissemination and research impact.
| 5 | **Research design**
| | **Contexts**
| | **Pedagogy**
| | **Teacher education**
| | **Curriculum and assessment**
| | **Dissemination and research impact.**
Suggested reading

Course Outcomes:
Students will be able to understand:
1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
Course Objectives
1. To achieve overall health of body and mind
2. To overcome stress

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Definitions of Eight parts of yog. (Ashtanga)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Yam and Niyam. Do’s and Don’t’s in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>• Asan and Pranayam 1. Various yog poses and their benefits for mind & body 2. Regularization of breathing techniques and its effects-Types of pranayam</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading
1. ‘Yogic Asanas for Group Tarining-Part-I” : Janardan Swami YogabhyasiMandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

Course Outcomes:
Students will be able to:
1. Develop healthy mind in a healthy body thus improving social health also
2. Improve efficiency
AUDIT 1 and 2: PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

Course Objectives
1. To learn to achieve the highest goal happily
2. To become a person with stable mind, pleasing personality and determination
3. To awaken wisdom in students

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neetisatakam-Holistic development of personality • Verses- 19,20,21,22 (wisdom) • Verses- 29,31,32 (pride & heroism) • Verses- 26,28,63,65 (virtue) • Verses- 52,53,59 (don’ts) • Verses- 71,73,75,78 (do’s)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>• Approach to day to day work and duties. • Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48, • Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35, • Chapter 18-Verses 45, 46, 48.</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>• Statements of basic knowledge. • Shrimad Bhagwad Geeta: Chapter 2-Verses 56, 62, 68 • Chapter 12-Verses 13, 14, 15, 16,17, 18 • Personality of Role model. Shrimad Bhagwad Geeta: Chapter 2-Verses 17, Chapter 3-Verses 36,37,42, • Chapter 4-Verses 18, 38,39 • Chapter18 – Verses 37,38,63</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes
Students will be able to
1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
Study of Neetishatakam will help in developing versatile personality of students